Dynamic Models

A Primer

Outline

- What is a Dynamic model (and how it's not a regression model)
- Examples
 - 0 X
 - o rho*X
 - B0 + rho*X
 - o rho*X + B2*X2
 - \circ X + B1*Z
 - \circ X + B1*dZ
 - \circ K = b0 + b1*Z
- Thoughts on how to build models
 - A simple ecosystem model

What is a dynamic model?

This is not a dynamic model

Directly relates x to y

Forecasting with this equation is easy

y = mx + b + N(0, sigma)

Where you sample from the uncertainty in

M and b: parameters (see note 1)

X: covariate or driver

N(0, sigma): "process" (see note 2

What is a dynamic model?

Models explaining change over time

Models where the future state is a **function of the current state** (and lags)

Dynamic models force us to focus on the PROCESS that causes CHANGE.

Behave differently from regression

Principle: Start simple, add complexity incrementally

x[t+1] = x[t]

Persistence forecast / random walk Uninteresting, but useful NULL

$$x[t+1] = rho*x[t]$$

exponential growth / decline autoregressive (AR1)

$$x[t+1] = \text{rho}*x[t] + \text{b2}*x[t]^2$$

$$N_{t+1} = N_t + rN_t \left(1 - \frac{N_t}{K}\right)$$

$$x[t+1] = x[t] + r(x)*x[t]$$

$$x[t+1] = x[t] + r(x)*x[t]$$

$$x[t+1] = x[t] + r(x)*x[t]$$

x[t+1] = x[t] + b1*Z[t] #add a covariate

Recommendations

- Frequently useful to model covariates as ANOMALIES around some mean or reference point
 - Z = 0 is when covariate has no impact relative to other terms
 - $b0 + rho*X + b1*Z_{absolute}$
 - b0 is growth at Z = 0
 - strong covariance between b0 and b1
 - $b0 + rho^*X + b1^*Z_{anomaly}$
 - b0 is growth under 'normal' conditions
 - b1 is slope of env sensitivity
- OK to transform Z's if + and impacts are not symmetric (e.g. drought has a stronger negative effect than pluvial has a positive effect)

Regression vs. dynamic model revisited

General dynamic model

parameter variability

$$Y_{t+1} = f(Y_t, X_t | \bar{\theta} + \alpha) + \varepsilon$$

Covariates

parameters

process error

x[t+1] = x[t] + r*x[t]*(1-x[t]/K[t])Logistic w/ K[t] = a0 + a1*Z[t+1]Varying r ∞ 0.25 0.99 x[1,] 2 0 10 15 20 25 30

AR(2) autoregessive

Building Multivariate models

- Box & Arrow models
- States
 - interacting species
 - biogeochemical pools
 - age/stage classes
 - spatial locations
- Can be converted to matrices

General dynamic model

General dynamic model

$$Y_{t+1} = Y_t + G - \mu Y_t$$
Growth Mortality (u proportion of Y die)

G = f(factors that influence growth)

A simple ecosystem process model

Develop balance equations

$$C_{leaf}[t+1] = C_{leaf}[t] + NPP_{L} - litterfall$$
 Functions of Covariates (PAR & Temperature)
$$C_{soil}[t+1] = C_{soil}[t] + NPP_{W} - mortality$$
 Temperature)

A simple ecosystem process model

Start with a conceptual model

- Boxes = states
- Solid arrows = fluxes
- Dashed arrows = influences

A simple ecosystem process model

Develop balance equations

Develop flux equations

$$NPP_L = GPP[t] * falloc_L$$

$$LAI[t] = SLA * C_{leaf}[t]$$

Italics:
parameters
that
need to be
estimated

Takeaways

- Start simple, build complexity incrementally
- Dynamic models: X_{t+1} = X_t + CHANGE
- State variables & transitions/fluxes (rates of change)
- Intercept = change independent of state variable (rare?)
- Can add complexity by making parameters functions of other things
- Covariates: absolute, anomaly, change (dZ)
 - dynamic models rarely predict synchrony between drivers and responses
- Functional responses (both endogenous & exogenous) need not be linear
- Takens's Theorem (lags can be useful)
- Boxs and Arrows
 - matrix models are ubiquitous in ecology