CHARACTERIZING UNCERTAINTY

Linear model assumptions

The linear model rests on some important assumptions:

- Errors are additive and normally distributed
- Errors are homoskdastic (don't vary across Xs)
- Observations are independent (conditional on the linear predictor)
- Linear (in covariates) mean function
- All error/randomness is in the value of the response (i.e., the X values are precisely known)
- There is no (systematic) missing data

Ecological data rarely conform to these assumptions!

SYNOPSIS

This section dives into the Bayesian methods for characterizing and partitioning sources of error that take us far beyond the classic assumption of a constant Normal variance.

- Non-Gaussian
- Errors in X Latent variables
 variables
- Missing Data

- Hierarchical models
 - State-Space (Wed)
- Heteroskedasticity

GRAPH NOTATION

$$\vec{y} \sim N(X\vec{\beta}, \sigma^2)$$

LINEAR REGRESSION

ERRORS IN VARIABLES

$$\vec{y} \sim N(X\vec{\beta}, \sigma^2)$$

 $x^{(o)} \sim N(x, \tau^2)$


```
model {
 ## priors
 for(i in 1:2) { beta[i] ~ dnorm(0,0.001)}
 sigma \sim dgamma(0.1,0.1)
 tau \sim dgamma(0.1,0.1)
 for(i in 1:n) { x[i] \sim dunif(0,10)}
 for(i in 1:n){
  xo[i] \sim dnorm(x[i],tau)
  mu[i] <- beta[1]+beta[2]*x[i]
  v[i] ~ dnorm(mu[i],sigma)
```


Additional Thoughts on EIV

$$x^{(o)} \sim g(x|\theta)$$

- Errors in X's need not be Normal
- Errors need not be additive
- Can account for known biases

$$x^{(o)} \sim N(\alpha_0 + \alpha_1 x, \tau^2)$$

- Observed data can be a different type (proxy)
 - e.g. calibration curves
- Very useful to have informative priors

Latent Variables

- Variables that are not directly observed
- Values are inferred from model
 - Parameter model: prior on value
 - Data and Process models provide constraint

- MCMC integrates over (by sampling) the values the unobserved variable could take on
- Contribute to uncertainty in parameters, model
- Ignoring this variability can lead to falsely overconfident conclusions

MISSING DATA

Data needs to be Missing At Random!!

JAGS example: Simple Regression

```
1.76
                                                                       11.38
                                                                 4.23
                                                                        9.12
model{
                                                                 7.73
                                                                         7.3
                                                                 2.43
                                                                        8.02
 ## priors
                                                                 6.46
                                                                        8.45
                                                                        8.95
                                                                 4.06
 for(i in 1:2) { beta[i] ~ dnorm(0,0.001)}
                                                                 2.42
                                                                        9.62
 sigma \sim dgamma(0.1,0.1)
                                                                        9.15
                                                                  0.6
                                                                 8.17
                                                                        7.51
 for(i in mis) { x[i] \sim dunif(0,10)}
                                                                 0.22
                                                                        10.8
                                                                 4.93
                                                                        9.78
                       Vector giving indices of
                                                                 2.99
                                                                       10.71
                                                                 8.36
                                                                        8.89
                       missing values
 for(i in 1:n){
                                                                  6.4
                                                                        8.21
   mu[i] <- beta[1]+beta[2]*x[i]
                                                                 8.17
                                                                        6.22
                                                                 6.46
                                                                         5.4
   y[i] ~ dnorm(mu[i],sigma)
                                                                 1.82
                                                                       10.05
                                                                        7.96
                                                                 9.52
                                                                 2.44
                                                                        9.63
                                                                 6.84
                                                                        7.05
                                                                 7.42
                                                                        8.73
                                                    mis = 26
                                                                  NA
                                                                         7.5
```

Y

8.46

8.55

7.01

9.06

X

4.68

2.95

9.09

8.15

HIERARCHICAL MODELS

$$Y_k \sim N(\mu_g + \alpha_k, \sigma^2)$$

 $\alpha_k \sim N(0, \tau^2)$

IMPACTS ON INFERENCE

EXPLAINING UNEXPLAINED VARIANCE

- Random effects attempt to account for the unexplained variance associated with some group (plot, year, etc.) due to all the things that were not measured
- May point to scales that need additional explanation
- Adding covariates may explain some portion of this variance, but there's always something you didn't measure
- Sometimes additional fixed effects not justified (model selection)

HETEROSKEDASTICITY

$$y \sim N(\beta_1 + \beta_2 x, (\alpha_1 + \alpha_2 x)^2)$$

Example: Linear varying SD

```
model{
    for(i in 1:2) { beta[i] ~ dnorm(0,0.001)} ## priors
    prec ~ gamma(s1,s2)
    for(i in 1:n){
        mu[i] <- beta[1]+beta[2]*x[i]
        y[i] ~ dnorm(mu[i],prec)
    }
}
```

```
model{
  for(i in 1:2) { beta[i] ~ dnorm(0,0.001)} ## priors
  for(i in 1:2) { alpha[i] ~ dlnorm(0,0.001)} ## was prec ~ gamma(a1,a2)
  for(i in 1:n){
         prec[i] <- 1/pow(alpha[1] + alpha[2]*x[i],2)
         mu[i] <- beta[1]+beta[2]*x[i]
         y[i] ~ dnorm(mu[i],prec[i])
    }
}</pre>
```