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Synopsis

A frequent goal in forecasting is to update analyses in 
light of new information. Bayesian analyses are 
inherently ‘updateable’ as the posterior from one analysis 
becomes the prior for the next. Classic ‘on-line’ data 
assimilation methods are designed to exploit this 
property to make iterative forecasts. In the first of two 
data assimilation sections we focus on methods that are 
computationally efficient and have analytical solutions, 
but require strong assumptions and/or significant 
modifications of the model code.





FORECAST-ANALYSIS CYCLE
Update prior 

understanding of 
the system based 

on new 
information

Predict the future using 
your current understanding 
of the system
➡Model-based
➡Error-propagation
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Simplest Forecast

✤ State uncertainty (IC) 
P(Xt) ~ N(µa,pa) 

✤ Process Model 
Xt+1 = mXt + εt 

✤ Process error 
εt ~ N(0,q)

✤ Assume µa , pa, m, and q are 
known

✤ What is P(Xt+1)?

✤ E[Xt+1] = E[mXt + εt] = mµa 

✤ Var[Xt+1] = Var[mXt + εt]

✤ m2Var[Xt] + Var[εt] - 
2Cov[mXt,εt]

✤ ≈ m2Var[Xt] + Var[εt]

✤ m2pa + q 

✤ P(Xt+1) ~ N(mµa ,m2pa + q)
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pf



The Analysis Problem

✤ Prior to observing how the future plays out, what is our best 
estimate of the future state of the system, Xt+1?

✤ The forecast, P(Xt+1)
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The Analysis Problem

✤ Prior to observing how the future plays out, what is our best 
estimate of the future state of the system, Xt+1?

✤ The forecast, P(Xt+1)

✤ Once we make (imperfect) observations of the system, Yt, what’s 
our best estimate of Xt?

✤ P(Xt+1) = P(Yt+1) ?

✤ P(Xt+1|Yt+1) ∝ P(Yt+1|Xt+1) P(Xt+1)

PriorLikelihoodPosterior
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Simplest Analysis

✤ P(Xt+1 |Yt+1) ~ N(µa,pa)

✤ Forecast: 
Assume P(Xt+1) ~ N(µf,pf)

✤ Observation error: 
Assume P(Yt+1|Xt+1) ~ N(Xt+1,r)

✤ Likelihood = Data model

✤ Assume µf, pf, Y, and r are known

X |Y ∼ N ( ρ
nρ + ϕ

nȲ +
ϕ

nρ + ϕ
μf , nρ + ϕ)

ρ = 1/r ϕ = 1/pf



Precision controls influence

Less Precise Data

Less Precise Model



Forecast Cycle

✤ Forecast Step: 
P(Xt+1) ~ N(µf = mµa , 
                     pf = m2pa + q)

✤ Analysis Step 
P(Xt+1 |Yt+1) ~ N(µa,pa)

✤ 1/pa = n/pf + 1/r

✤ µa = (µf /pf +nY/r)·pa 

✤ Has an analytical solution!
✤ Kalman Filter

Rudolf Kalman



–  D AV E  M O O R E

“Data assimilation isn’t rocket science,  
but you can use it for that.” 
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✤ (n x 1) vector of state means, µa or µf (multiple variables and/or sites)

✤ (n x n) state error covariance matrix, Pa or Pf     (was pa, pf )

✤ (p x 1) vector of observations, Y

✤ (p x p) observation error covariance matrix, R   (was r)

✤ (p x n) observation matrix, H

✤ (n x n) linear process model, M    (was m)

✤ (n x n) process error covariance matrix, Q    (was q)

Generalized to Multivariate



Kalman Gain

P−1
a = HTR−1H + P−1

f



Kalman Gain



Example

✤ Assume µf = {µ1,µ2,µ3}, Y = {y2,y3}, and observation error is R = σ2 I

✤ The posterior mean for the unobserved X1 is

X1     X2     X3

Y2 

Y3

covariances among 
things we know

covariance between 
knowns and unknown



Forecast Step Xt+1 = MXt + ϵ



Pro/Con of Kalman Filter (KF)

✤ Analytically tractable

✤ Depends only upon the 
PREVIOUS state, the current 
Forecast, and the current Data 
 
 

✤ Linear

✤ Normal 

✤ Matrix inversion

✤ Assumes all parameters 
(H, R, M, Q) are known

✤ Forward only



UNCERTAINTY PROPAGATION 
APPLIED IN THE FORECAST STEP

KF
EKF

EnKFPF



Extended Kalman Filter (EKF)

✤ Addresses linear assumption of the Forecast

✤ µf  = f(µa)

✤ Update variance using a Taylor Series expansion

✤ F = Jacobian (dfi/dxj)

✤ Pf ≈ Q + F Pa FT        (was Q + M Pa MT)

✤ Can be extended to higher orders

✤ Jensen’s Inequality: Biased, Normality assumption FALSE
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Nt+1 = Nt + rNt (1 +
N
K ) ∂Nt+1

∂Nt
= 1 + r −

2r
K

Nt


