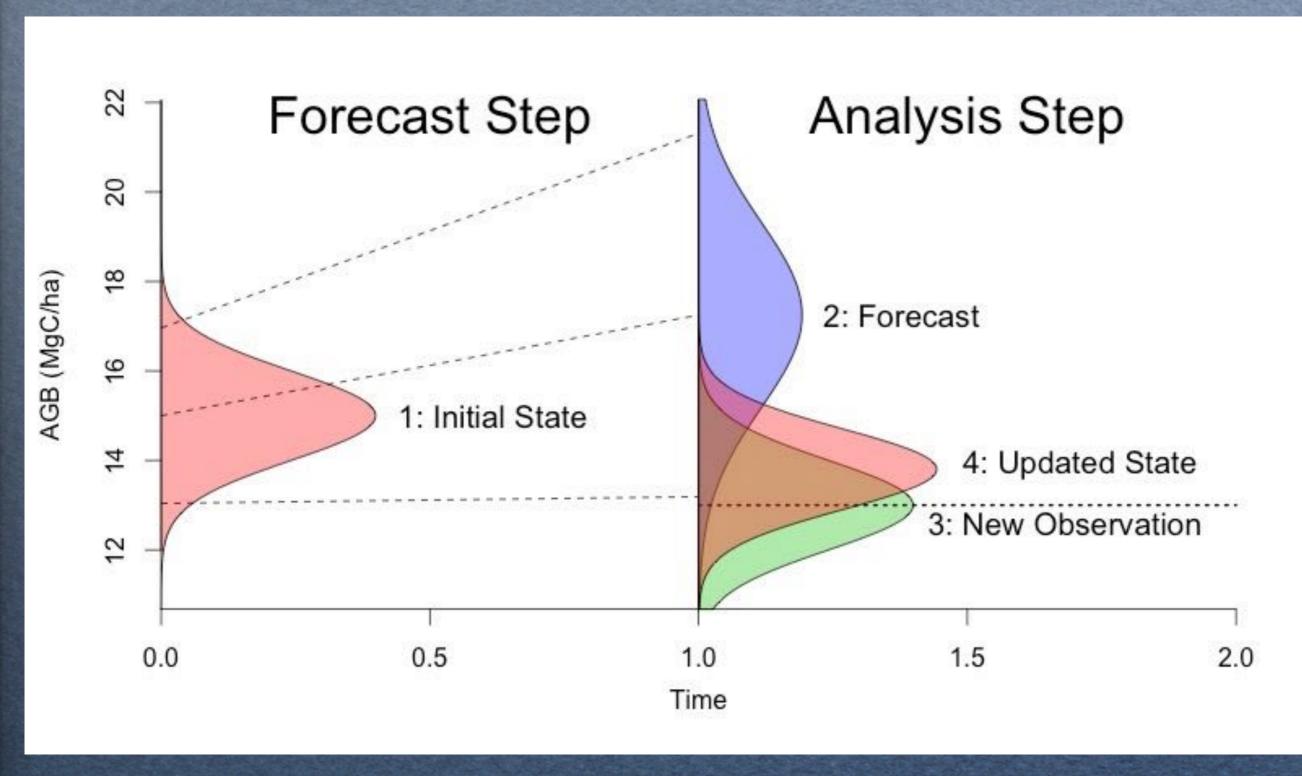


Data Assimilation 2: Monte Carlo Methods

Lesson 10

"An approximate answer to the right problem is worth a good deal more than an exact answer to an approximate problem." John W. Tukey



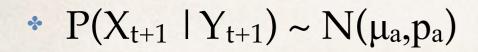
Forecast Cycle

UNCERTAINTY PROPAGATION APPLIED IN THE FORECAST STEP

		Output	
Approach		Distribution	Moments
	Analytic	Variable Transform	Analytical Moments KF Taylor Series EKF
	Numeric	Monte Carlo PF	Ensemble EnKF

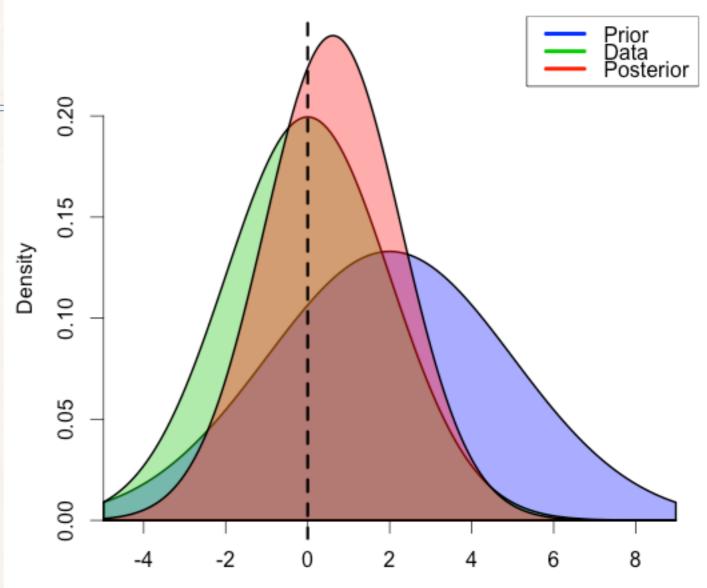
Kalman Analysis

- * Forecast: Assume $P(X_{t+1}) \sim N(\mu_f, p_f)$
- * Observation error: Assume $P(Y_{t+1} | X_{t+1}) \sim N(X_{t+1},r)$
 - Likelihood = Data model
- * Assume Y, μ_f, p_f and r are known



$$\rho = 1/r \qquad \phi = 1/p_f$$

$$X Y \sim N \left(\frac{\rho}{n\rho + \phi} n \bar{Y} + \frac{\phi}{n\rho + \phi} \mu_f, n\rho + \phi \right)$$



$$X_a|Y\sim N(Y|HX_a,R)N(X_a|\mu_f,P_f)$$

Solves to be

$$X_a|Y \sim N((H^T R^{-1} H + P_f^{-1})^{-1} (H^T R^{-1} Y + P_f^{-1} \mu_f),$$

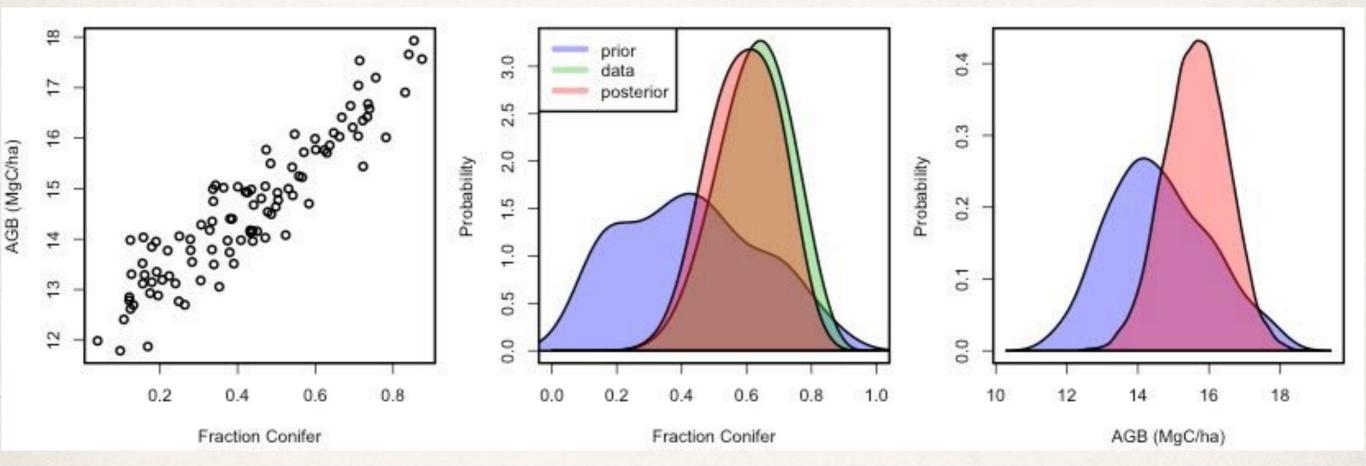
 $(H^T R^{-1} H + P_f^{-1})^{-1})$

Mean and variance simplify to

$$E[X_a|Y] = \mu_a = \mu_f + K(Y - H\mu_f)$$

$$Var[X_a|Y] = P_a = (I - KH)P_f$$

$$K = P_{fH}^T (R + H P_f H^T)^{-1}$$
 Kalman Gain



Forecast Step

$$X_{t+1} = MX_t + \epsilon$$

The posterior distribution of X_{t+1} given X_t is multivariate normal with

$$\mu_{f,t+1} = E[X_{f,t+1}|X_{a,t}] = M_t \mu_{a,t}$$

$$P_{f,t+1} = Var[X_{f,t+1}|X_{a,t}] = Q_t + M_t P_{a,t-1} M_t^T$$

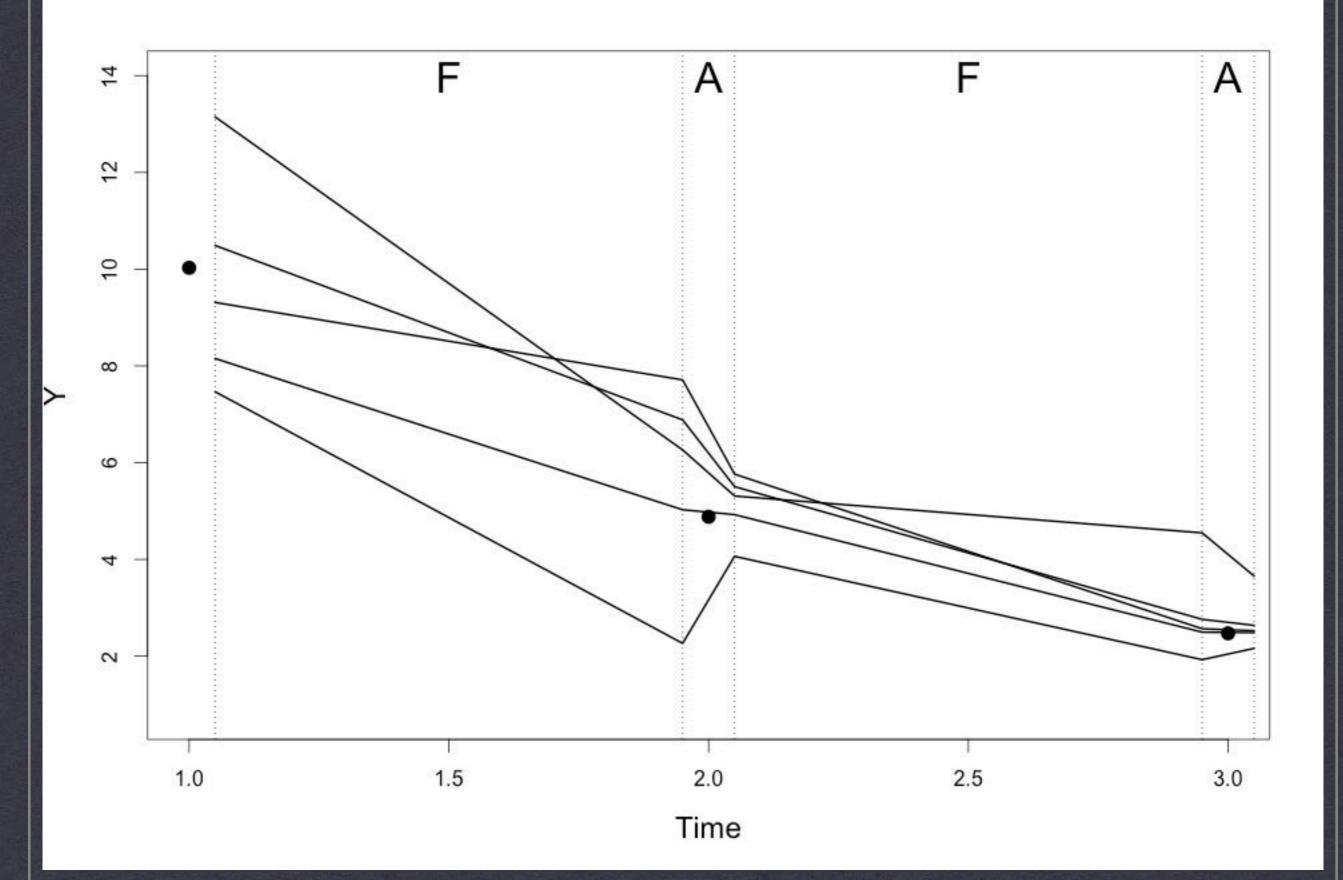
Extended Kalman Filter (EKF)

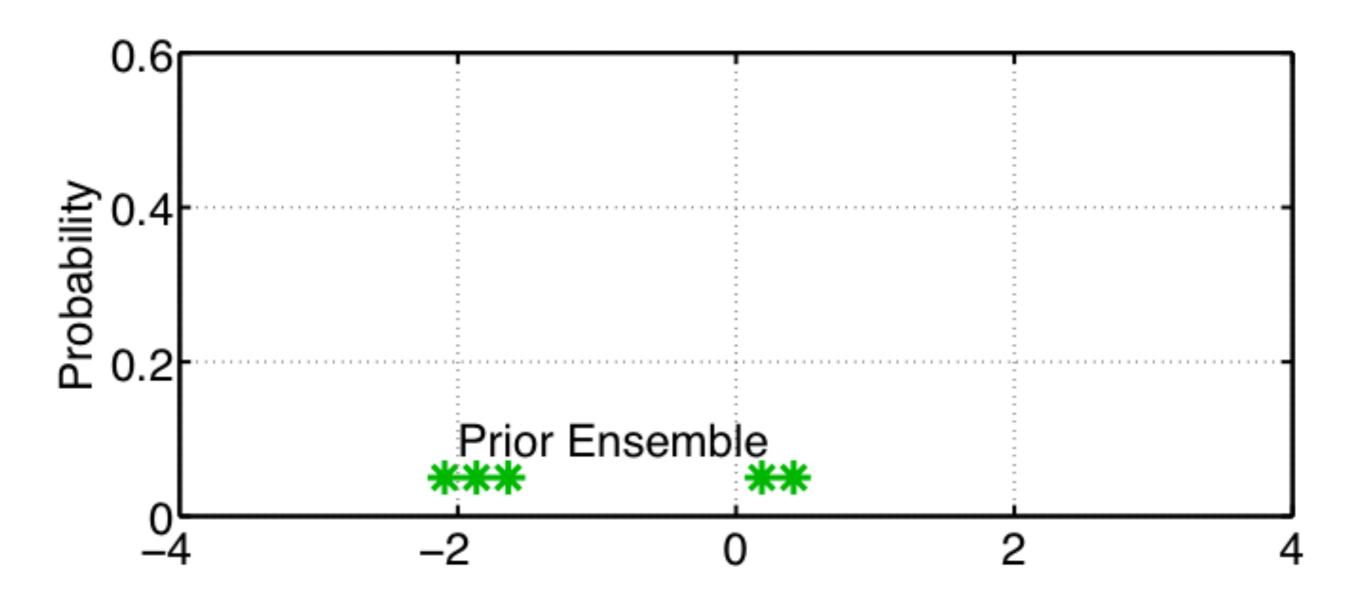
- * Addresses linear assumption of the Forecast
 - $\mu_f = f(\mu_a)$
- Update variance using a Taylor Series expansion
 - * $F = Jacobian (df_i/dx_j)$
 - * $P_f \approx Q + F P_a F^T$ (was $Q + M P_a M^T$)
 - Can be extended to higher orders
- Jensen's Inequality: Biased, Normality assumption FALSE

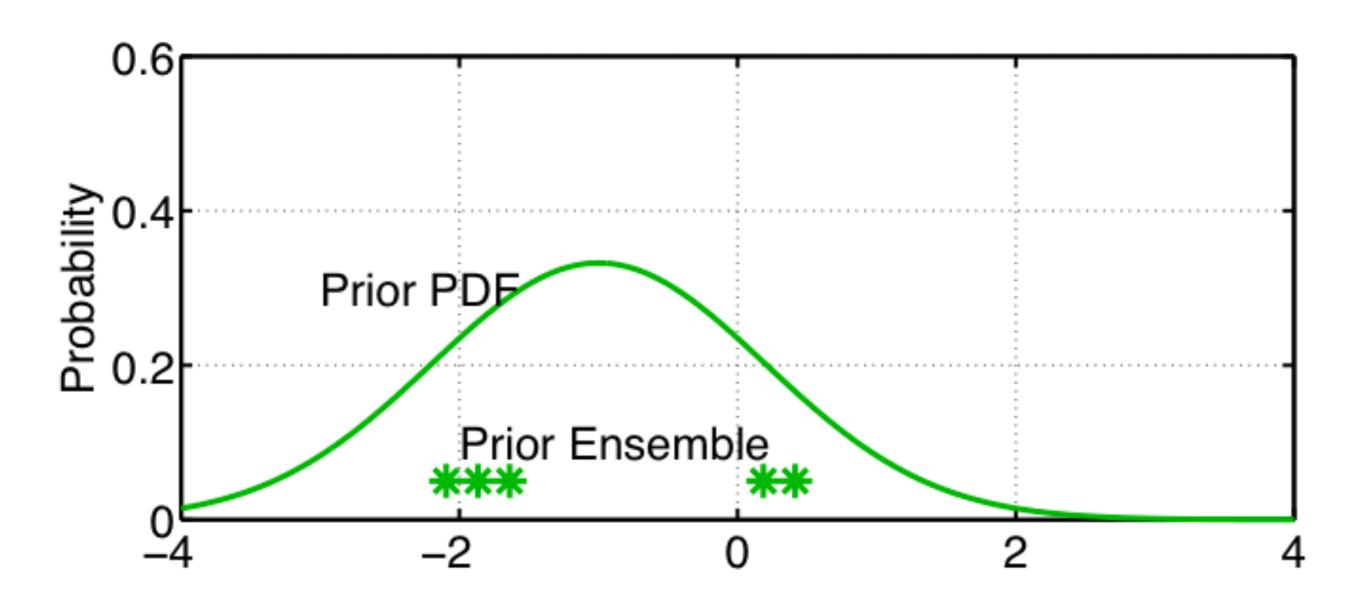
Ensemble Kalman Filter (EnKF)

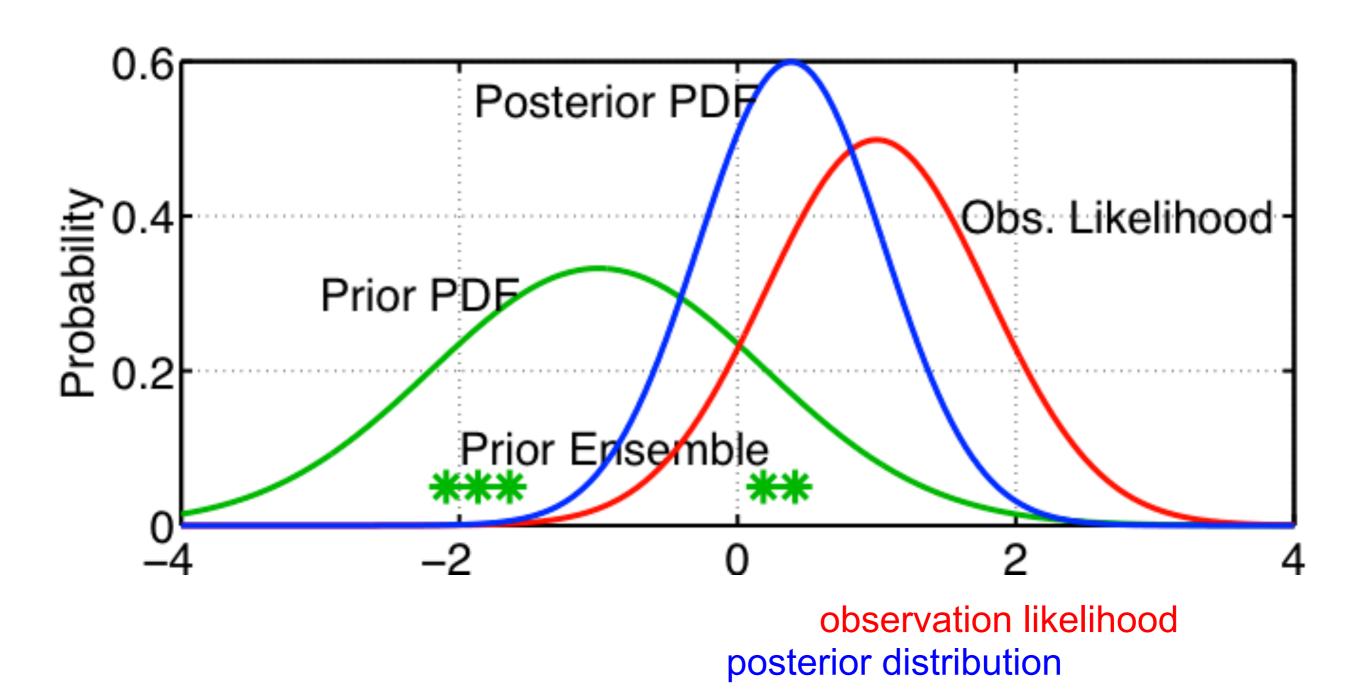
- O Analysis identical to KF
- Uses Monte Carlo samples / Ensemble to approximate Forecast distribution
 - Draw m samples from the Analysis posterior
 - Run process model + process error for sample $\mu_{f,t+1} = \frac{1}{m} \sum X_{f,i}$

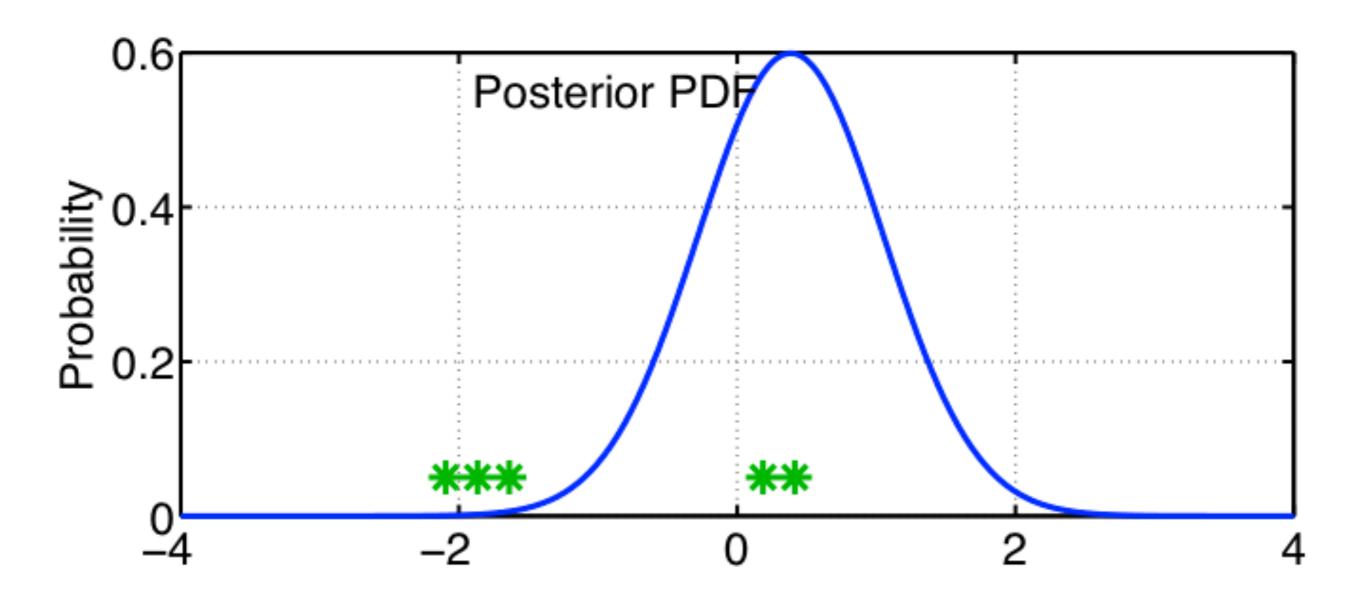
$$P_{f,t+1} = COV[X_{f,i}]$$

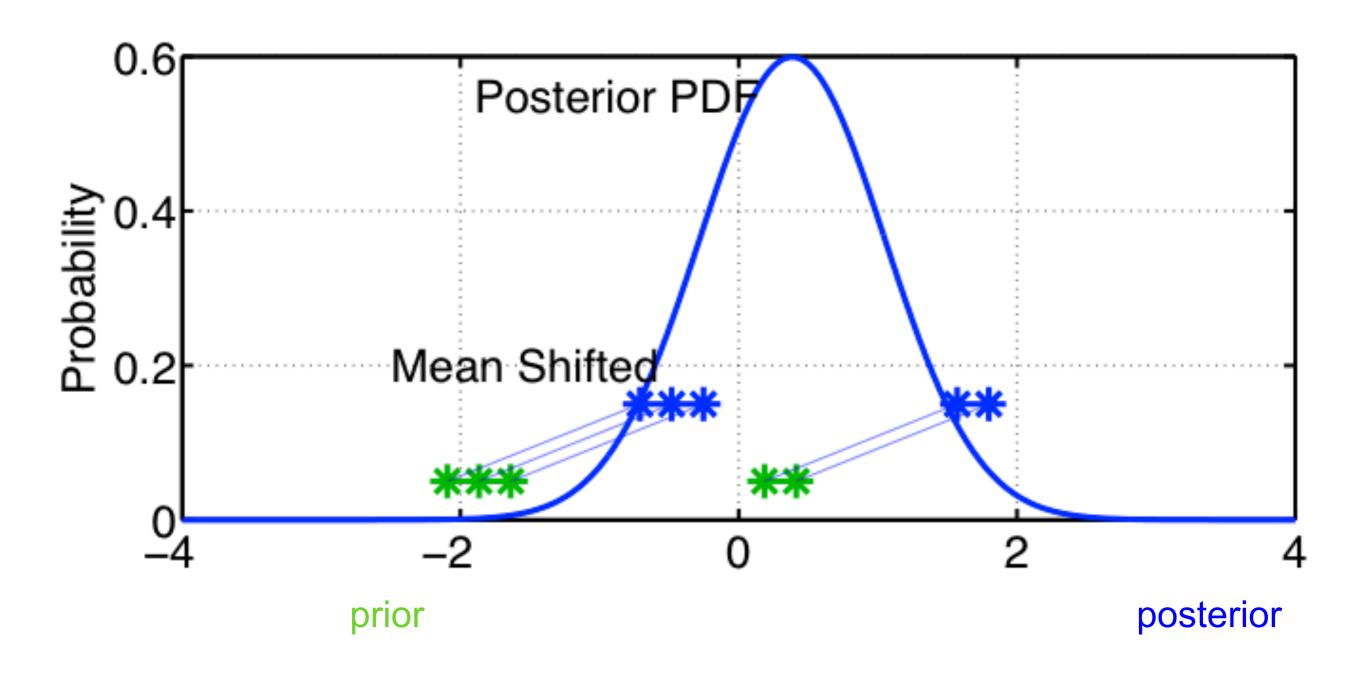


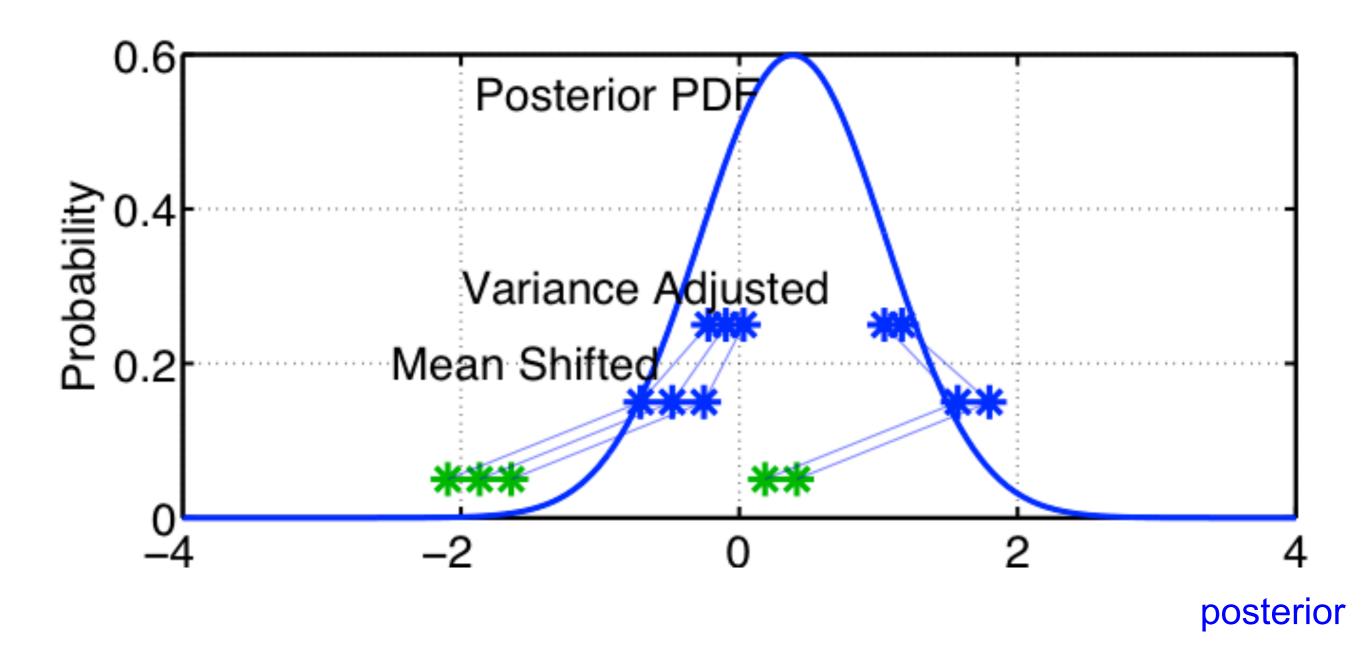












Ensemble Adjustment

- Alt to resampling analysis posterior,
 nudge current ensemble
- U useful when other uncert & latent states
- \square SVD: $P = VLV^{-1}$
- Normalize: $Z_i = \sqrt{L_f^{-1}} V_f^{-1} * (X_{i,f} \mu_f)$
- \Box update: $X_{i,a} = V_a \sqrt{L_a} Z_i + \mu_a$

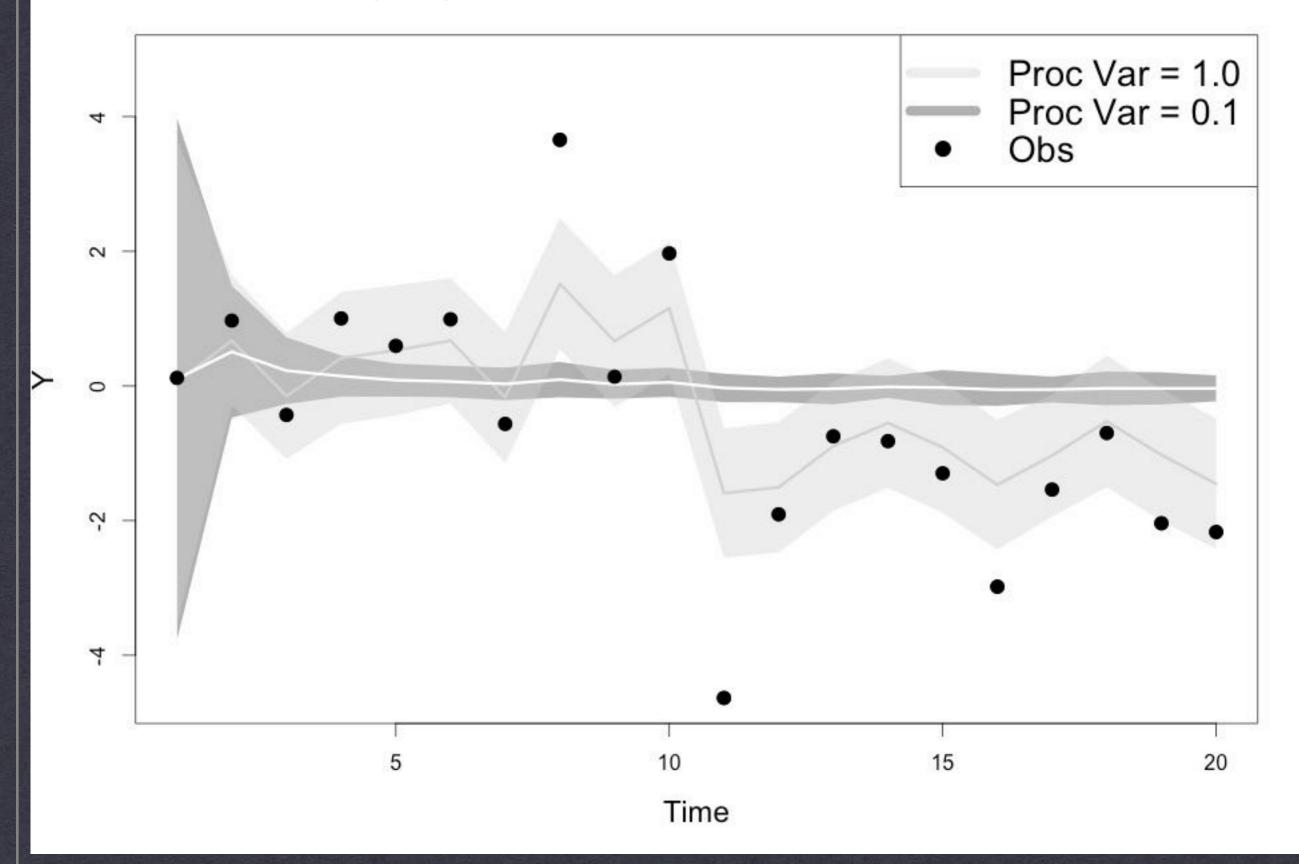
EnKF pro/con

- O Nonlinear
- □ Existing code: No Jacobian
- □ Simple to implement, understand
- □ Sample size chosen based on power analysis
 - O con: larger than Analytical methods
- □ Simpler to add other sources of uncert. (e.g. driver)
- □ Moments OK on Jensen's Inequality
- □ Normal, but violates Normality
 - ☐ Analysis not hard to generalize (Likelihood * Prior) but unlikely to have an analytical sol'n

Localization

- All KF flavors involve matrix inversion
- O Cheaper if correlation matrix is sparse
- Often assume correlations beyond some distance are zero
 - avoids spurious correlations
 - O distance need not be physical

FILTER DIVERGENCE



Filter Divergence

- □ Practitioners of DA in atm sci frequently worry about model variance collapsing to zero
- □ Model then ignores (diverges from) data
- O Process error is TUNED [BAD]
- □ Ecology is far less chaotic
 - Occasionally, convergence is right answer
 - □ In others, indicates misspecified process model or partitioning of process error

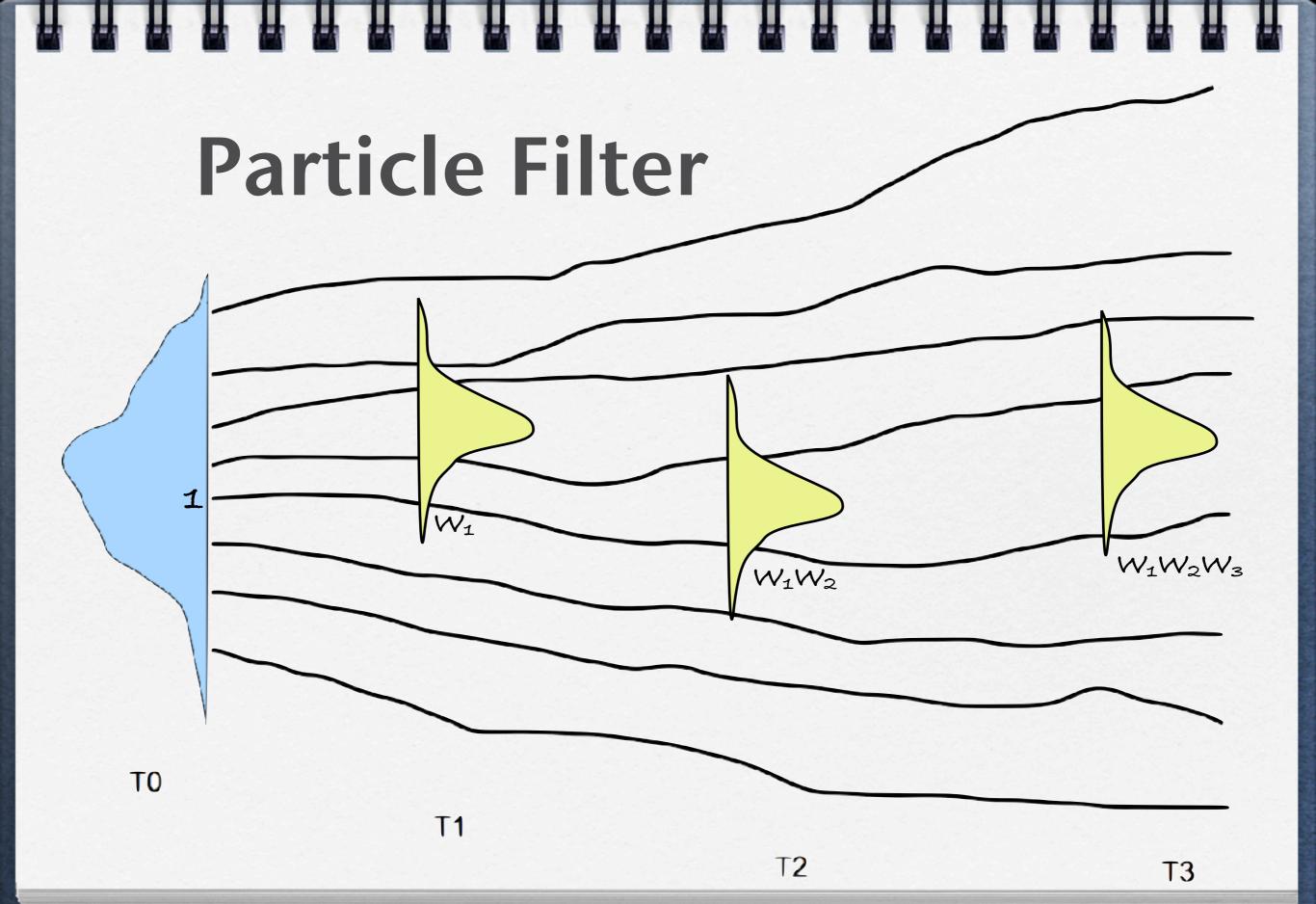
No KF variant can estimate process and observation errors

Random Walk State Space

$$P(X_t, \tau_{obs}, \tau_{proc} | Y_t) \propto N(Y_t | X_t, \tau_{obs}) \times N(X_t | X_{t-1}, \tau_{proc}) \Gamma(\tau_{proc}) \Gamma(\tau_{obs})$$



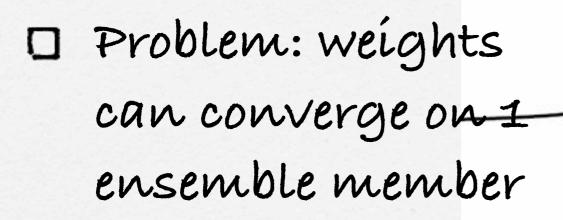
- Can eliminate distributional assumptions!
- Can eliminate Normal x Normal Analysis
- How to do Analysis step when prior is a sample, not an equation?

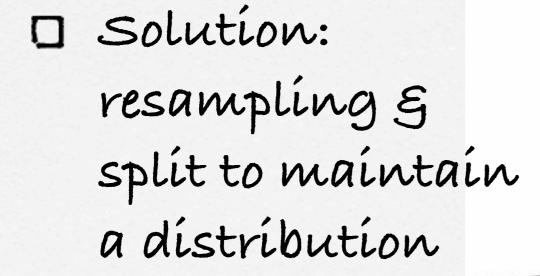


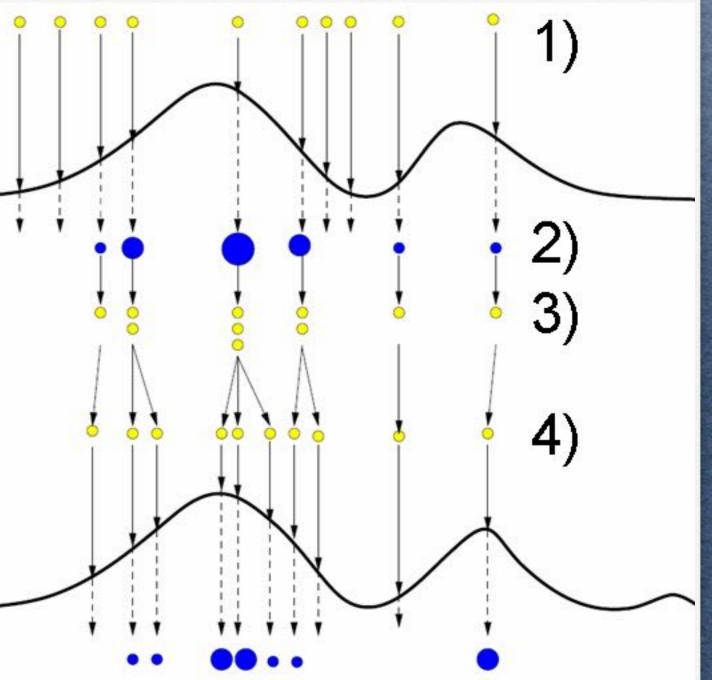
Particle Filter

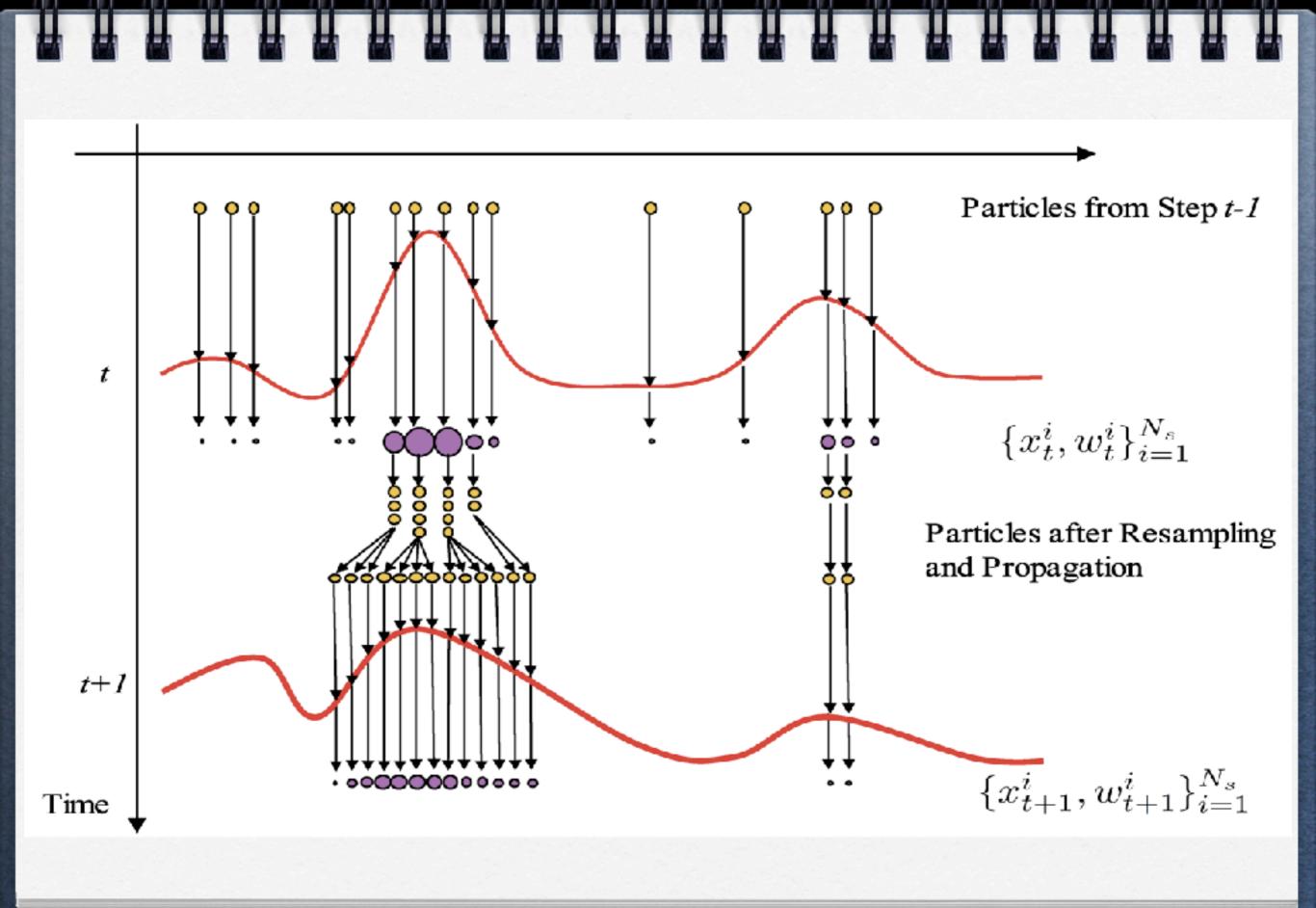
- U Weights provided by the likelihood
 - □ posterior × likelihood × prior
- □ Estimates based on weighted mean, variance, CI, etc.
- a.k.a. Sequential Monte Carlo

Resampling PF









When to resample?

- □ Too often: loose particles through drift
- □ Not enough: converges (degeneracy), poor distribution
- Typically resample when effective sample size, $1/sum(W^2)$, drops below some threshold (e.g. N/2)
- □ NOTE: At resample, weights reset to 1!!

Particle Filter pro/con

- O Con:
 - O Computation!
- ☐ Pros:
 - O Simple to implement
 - O General, Flexible
 - O can evaluate all params
 - O Parallelizable

Kernel Smoothing

- D Parameters lack process error, subject to degeneracy
- Can be resampled from kernel smoother =
 continuous approx of joint PDF
- □ Req choice of smoothing/bandwidth
- □ Even better if M-H accept/reject proposed Moves
- O Global, Gaussian smoothing

$$\theta_i^* = \bar{\theta} + h(\theta_i - \bar{\theta}) + \epsilon_i \sqrt{1 - h^2}$$
$$e_i \sim MVN(0, \bar{\Sigma})$$

h=1 no smoothing h=0 redraw iid

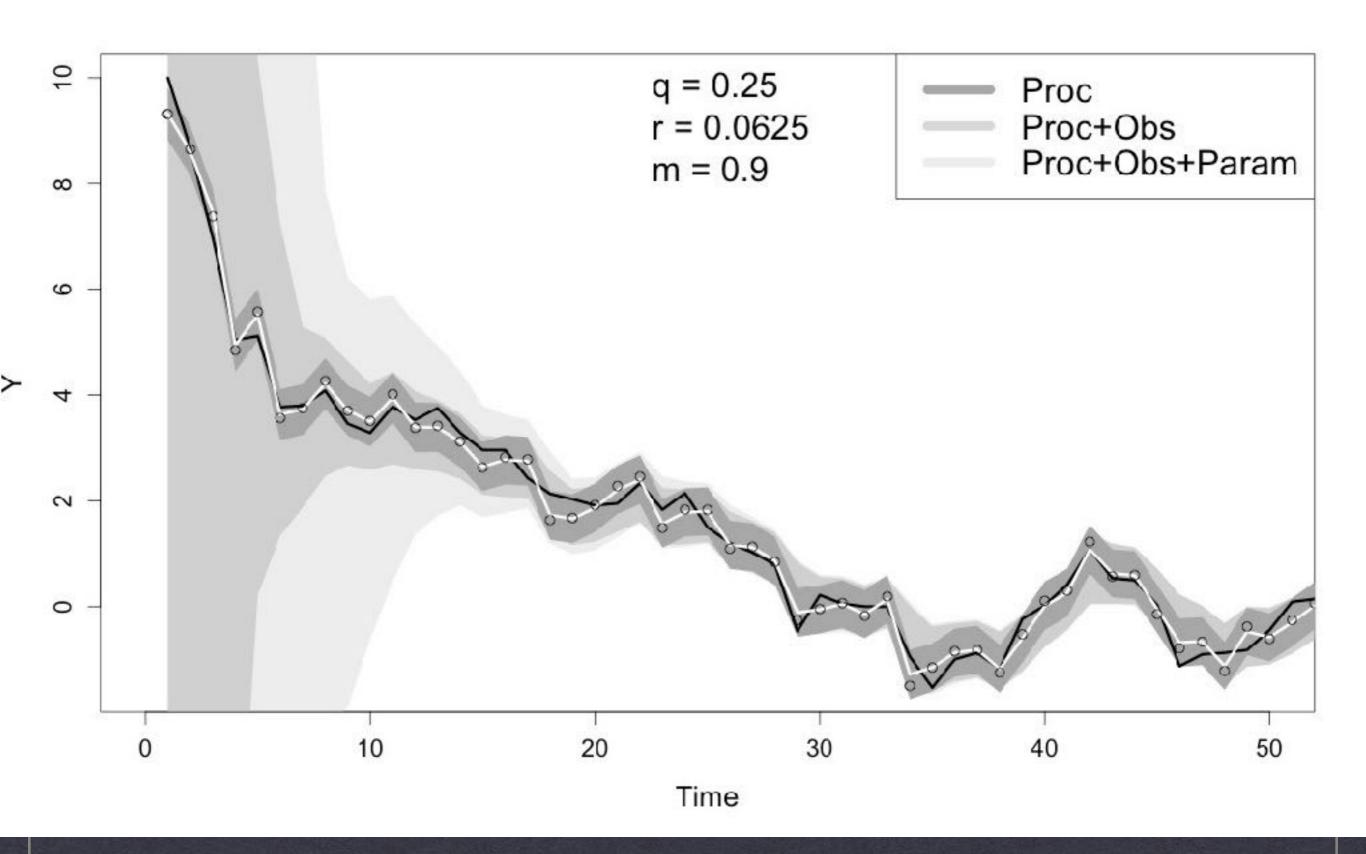
UNCERTAINTY PROPAGATION APPLIED IN THE FORECAST STEP

		Output	
Approach		Distribution	Moments
	Analytic	Variable Transform	Analytical Moments KF Taylor Series EKF
	Numeric	Monte Carlo PF	Ensemble EnKF

WHAT ABOUT THE ANALYSIS STEP?

What about MCMC?

- Option 1: Refit full State-Space Model
- Option 2: Just update forecast from State-Space
 - □ A: treat priors (forecast § params) as samples -> PF
 - DB: approximate priors w/ dist'n



```
LinStateSpace <-
model{
  X0 \sim dnorm(mu0,pa0)
     ~ dgamma(aq,bq)
     ~ dgamma(ar,br)
     \sim dnorm(m0,s)
  for(i in 1:nt){
    Y[i] \sim dnorm(X[i],r)
    X[i] \sim dnorm(mu[i],q)
  mu[1] \leftarrow X0
  for(i in 2:nt){
    mu[i] \leftarrow m*X[i-1]
```

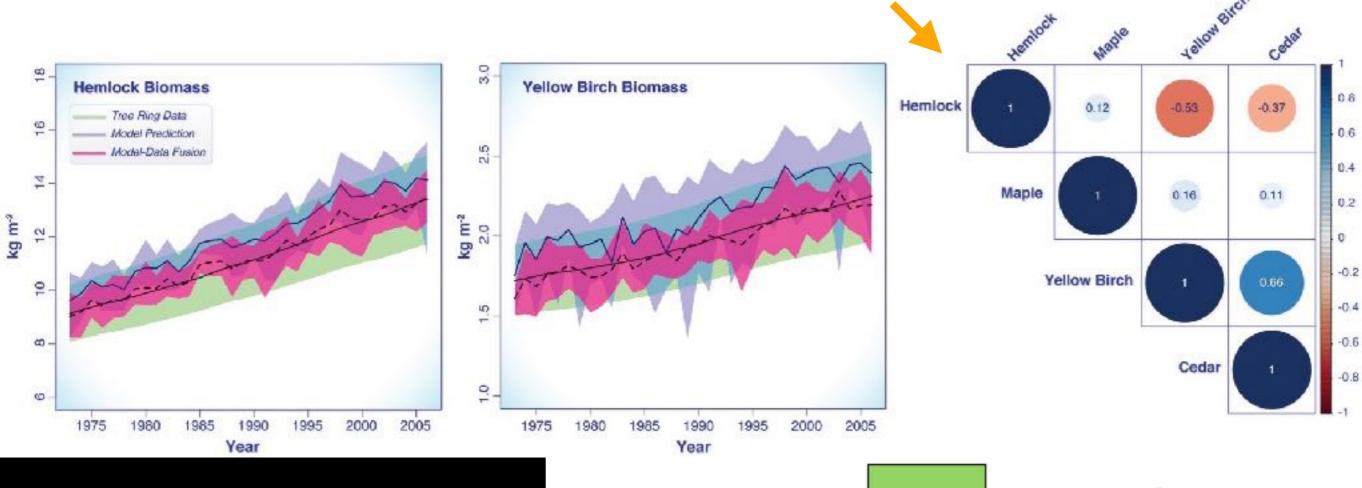
for (i in 1:nt)

```
LinFilterParam <-
model{
  ## Priors
  X.ic \sim dnorm(mu0,pa0)
  q \sim dgamma(aq,bq)
  r \sim dgamma(ar,br)
  m \sim dnorm(mu.m, tau.m)
  ## Forecast
  mu <- m*X.ic
  X \sim dnorm(mu,q)
  ## Analysis
     \sim dnorm(X,r)
```

priors set based on previous posteriors

GENERALIZED ENSEMBLE FILTER

Estimated Process Error



Multivariate Tobit

- Range restrictions
- Zero inflated

 Q_{t+1} Data Calculate $\alpha_{q_{t+1}}$ and β_{a} -y and RForecast **Analysis** Mapping to from (Tobit Wishart μ_f and P_f **Tobit** ecosystem Ensemble Space μ_a and P_a model Filter) Forecast Restart

Raiho et al 2020 BioRxiv

- All DA variants are forward-only special cases of State Space model
- Forecast Step: Standard DA methods map to uncertainty propagation axes
- Analysis step: Do not feel constrained by Kalman,
 Take Assumptions into your own hands, MCMC often viable