
Data Assimilation 2: 
Monte Carlo Methods

Lesson 10

"An approximate answer to the right problem is worth a 
good deal more than an exact answer to an approximate 

problem." John W. Tukey



Forecast Cycle



UNCERTAINTY PROPAGATION 
APPLIED IN THE FORECAST STEP

KF
EKF

EnKFPF



Kalman Analysis

✤ P(Xt+1 |Yt+1) ~ N(µa,pa)

✤ Forecast: 
Assume P(Xt+1) ~ N(µf,pf)

✤ Observation error: 
Assume P(Yt+1|Xt+1) ~ N(Xt+1,r)

✤ Likelihood = Data model

✤ Assume Y, µf, pf and r are known

X |Y ∼ N ( ρ
nρ + ϕ

nȲ +
ϕ

nρ + ϕ
μf , nρ + ϕ)

ρ = 1/r ϕ = 1/pf



Kalman Gain





Forecast Step Xt+1 = MXt + ϵ



Extended Kalman Filter (EKF)

✤ Addresses linear assumption of the Forecast

✤ µf  = f(µa)

✤ Update variance using a Taylor Series expansion

✤ F = Jacobian (dfi/dxj)

✤ Pf ≈ Q + F Pa FT        (was Q + M Pa MT)

✤ Can be extended to higher orders

✤ Jensen’s Inequality: Biased, Normality assumption FALSE



Ensemble Kalman Filter (EnKF)
Analysis identical to KF 

Uses Monte Carlo samples / Ensemble 
to approximate Forecast distribution 

Draw m samples from the Analysis 
posterior  

Run process model + process error 
for sample
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Ensemble adjustment (Kalman) filter

5 member ensemble of prior estimates of an observed variable 
obtained by applying h to ensemble state vector
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Ensemble adjustment (Kalman) filter

Fit normal with the sample mean and variance of the ensemble
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Ensemble adjustment (Kalman) filter

Product of of this (green curve) and observation likelihood (red 
curve) gives us our continuous posterior distribution (blue curve)



© 2012 National Ecological Observatory Network, Inc. ALL RIGHTS RESERVED. 
14

Ensemble adjustment (Kalman) filter

But we need a posterior ensemble…
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Ensemble adjustment (Kalman) filter

So first shift prior ensemble so it has the same mean as the posterior
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Ensemble adjustment (Kalman) filter

Then linearly contract the ensemble so it has the same variance as the posterior



Ensemble Adjustment
Alt to resampling analysis posterior, 
nudge current ensemble 

Useful when other uncert & latent states 

SVD: 

Normalize: 

Update:

P = VLV−1

Zi = Lf
−1

V−1
f * (Xi, f − μf )

Xi,a = Va LaZi + μa



EnKF pro/con
Nonlinear 

Existing code: No Jacobian 

Simple to implement, understand 

Sample size chosen based on power analysis 

Con: larger than Analytical methods 

Simpler to add other sources of uncert. (e.g. driver) 

Moments OK on Jensen’s Inequality 

Normal, but violates Normality 

Analysis not hard to generalize (Likelihood * Prior) 
but unlikely to have an analytical sol’n



Localization
All KF flavors involve matrix 
inversion 

Cheaper if correlation matrix is sparse 

Often assume correlations beyond 
some distance are zero 

avoids spurious correlations 

distance need not be physical



FILTER DIVERGENCE



Filter Divergence
Practitioners of DA in atm sci frequently 
worry about model variance collapsing to zero 

Model then ignores (diverges from) data 

Process error is TUNED  [BAD] 

Ecology is far less chaotic 

Occasionally, convergence is right answer 

In others, indicates misspecified process 
model or partitioning of process error



No KF variant can 
estimate process and 

observation errors

P(Xt, τobs ,τproc|Yt)∝ N(Yt|Xt,τobs)⨉ 

               N(Xt|Xt-1,τproc)Γ(τproc) Γ(τobs)

 Random Walk State Space



What if we forecast 
with a large Monte 

Carlo sample? 
• Can eliminate distributional assumptions! 

• Can eliminate Normal x Normal Analysis 
  
• How to do Analysis step when prior is a 
   sample, not an equation?



Particle Filter

1
W1

W1W2
W1W2W3



Particle Filter

Weights provided by the likelihood 

posterior ∝ likelihood ⨉ prior 

Estimates based on weighted mean, 
variance, CI, etc. 

a.k.a. Sequential Monte Carlo



Resampling PF

Problem: weights 
can converge on 1 
ensemble member 

Solution: 
resampling & 
split to maintain 
a distribution





When to resample?
Too often: loose particles through drift 

Not enough: converges (degeneracy), 
poor distribution 

Typically resample when effective 
sample size, 1/sum(W2), drops below 
some threshold (e.g. N/2) 

NOTE: At resample, weights reset to 1!!



Particle Filter pro/con
Con:  

Computation! 

Pros: 

Simple to implement 

General, Flexible 

Can evaluate all params 

Parallelizable



Kernel Smoothing
Parameters lack process error, subject to degeneracy 

Can be resampled from kernel smoother = 
continuous approx of joint PDF  

Req choice of smoothing/bandwidth 

Even better if M-H accept/reject proposed Moves 

Global, Gaussian smoothing

θ*i = θ̄ + h(θi − θ̄) + ϵi 1 − h2

ei ∼ MVN(0,Σ̄)
h=1 no smoothing 
h=0 redraw iid



UNCERTAINTY PROPAGATION 
APPLIED IN THE FORECAST STEP

KF
EKF

EnKFPF

WHAT ABOUT THE ANALYSIS STEP?



What about MCMC?
Option 1: Refit full State-Space 
Model 

Option 2: Just update forecast from 
State-Space 

A: treat priors (forecast & 
params)as samples -> PF 

B: approximate priors w/ dist’n 





for (i in 1:nt)

priors set 
based on 
previous 

posteriors



G E N E R A L I Z E D  E N S E M B L E  F I LT E R
Estimated Process Error

Multivariate Tobit
• Range restrictions 
• Zero inflated

Raiho et al 2020 BioRxiv



`
‣Iterative Forecast-Analysis Cycle (Data Assimilation) 

allow us to continually confront models with data 
‣All DA variants are forward-only special cases of 

State Space model 
‣Forecast Step: Standard DA methods map to 

uncertainty propagation axes 
‣Analysis step: Do not feel constrained by Kalman, 

Take Assumptions into your own hands, MCMC often 
viable


