

Assessing Model Performance

Lesson II

Step 1: Is the model output reasonable?

Step 2: Graphical comparisons to data

Accuracy of Prediction

Observed Values

Predicted Values

Identify Outliers

Assess Biases

Observed Values

Predicted Values

Miscalibration

Predicted Values

Dynamics & Drivers

Diagnosing a model is Hypothesis Testing

Why would a model fail at low humidity?

Stomatal sensitivity too low?

Too much soil moisture?

What experiments would I run in the model to test this?

Focus on key assumptions

"data simulated under a model should look similar to data gathered in the real world." Conn et al 2018

IN THE FITTING, WE ASSUMED IID NORMAL ERRORS GPP

Does that seem like an adequate description of the data?

IN THIS FITTING, WE ASSUMED EXPONENTIAL ERRORS WITH NON-CONSTANT VARIANCE

GPP

Does that seem like an adequate description of the data?

How Good Are FiveThirtyEight Forecasts?

Bayesian p-value / prediction interval

- Posterior predictive distribution is the uncertainty of the "true" value
- Prediction interval is the expected variance of the observed values = PPD + error
 - Shows us what distribution we would expect for the data
- Bayesian p-value is when we use PPD + error to calculate the value of the cdf of the observed data
 - Distribution should be flat (uniform)
 - "Bayesian residuals"

PPD + Error

Posterior Predictive Distribution

Distribution of ecdf values for residuals

Step 3: Quantitative Skill Assessment

Error Statistics

- Root Mean Square Error (RMSE)
- Bias
- Correlation (r)
- \mathbb{R}^2
- Regressionslope

 $RMSE = \sqrt{\frac{1}{N}} \sum_{i=1}^{N} (y_i - x_i)^2$

Proper: based on the metric used for calibration Local: depends on data that could actually be collected

Correlation

Normalized RMSE

Schaefer et al. 2012 JGR-B

Autocorrelation

Correlogram

Brier score

Contribution BS₁ of one forecast to the total Brier Score

Continuous Ranked Probability Score

CRPS
$$(F, x) = -\int_{-\infty}^{\infty} (F(y) - \mathbb{1}\{y \ge x\})^2 dy$$

Continuous Ranked Probability Score

CRPS
$$(F, x) = -\int_{-\infty}^{\infty} (F(y) - \mathbb{1}\{y \ge x\})^2 dy$$

CRPS
$$(\hat{F}_m, y) = \frac{1}{m} \sum_{i=1}^{m} |X_i - y| - \frac{1}{2m^2} \sum_{i=1}^{m} \sum_{j=1}^{m} |X_i - X_j|$$

Mean Absolute Error

Penalty for ensemble spread

https://github.com/eco4cast/neon4cast-scoring/blob/main/₂₉ CRPS_example_JRT.Rmd

Data mining the residuals

- Wide variety of DataMining algorithms in use
- Large debate about use in process modeling and forecasting
- Potentially useful for generating hypothesis about when/where model fails

- **CART**
- **GAM**
- Random Forests
- Boosted regression trees /XGBoost
- Artificial Neural Network
- Deep Learning

CART

Random Forest

Hybrid Models (Process + NN)

E. Domain Adaptation

Input Layer Hidden Hidden pretrained Layers retrained pretrained retrained on model against data outputs et al 2024 X_{SIM} Process-based \hat{y}_{PHY} model Parameters 7

Ecology Letters

Expected performance sweet spots

Data Availability

Wesselkamp et al 2024 Ecology Letters