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Assumptions of Linear Model

● Homoskedasticity Model variance
● No error in X variables Errors in variables
● No missing data Missing data model
● Normally distributed error    GLM
● Error in Y variables is measurement error
● Observations are independent



  

Hierarchical Models
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Common Mean

yk~N  ,2
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Hierarchical Mean,
Common Variance

Y k~N k ,
2

k~N  ,2

2~IG s1 , s2

At this point, this model
is fitting each data set
independently but
assume the mean for
each has the same prior



  

Hierarchical Mean,
Common Variance

Y k~N k ,
2

k~N  ,2

2~IG s1 , s2
For the hierarchical
model, instead assume
the prior contains
unknown model
parameters



  

Hierarchical Mean,
Common Variance

Y k~N k ,
2

k~N  ,2

2~IG s1 , s2

Then need to specify
hyperpriors on our prior

~N 0,V  
2~IG t1, t2
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Hierarchical Models

● Model variability in the parameters of a
model

● Partition variability more explicitly into
multiple terms

● Borrow strength across data sets

● Details usually in the SUBSCRIPTS
● Hierarchical with respect to parameters



  

Random Effects

● Common special case of Hierarchical models

Y k~N k ,
2

k~N  ,2

2~IG s1 , s2

~N 0,V  

2~IG t1, t2

Y k~N gk ,
2

k~N 0,2

2~IG s1 , s2

 g~N 0,V 

2~IG t1, t2



  

Random Effects

● Common special case of Hierarchical models

Y k~N gk ,
2

k~N 0,2

2~IG s1 , s2

 g~N 0,V 

2~IG t1, t2



  

Random Effects

Y k~N gk ,
2

k~N 0,2

2~IG s1 , s2

 g~N 0,V 

2~IG t1, t2

● Random effects
always have mean 0

● Random effects
variance attributes a
portion of uncertainty
to a specific source

● Can be used to try
an account for a lack
of independence



  

Random Effects Mean
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What things can be random effects?

● Traditionally, random effects apply to aspects of
the study that would not be the same if
replicated
– e.g. Plot, Block, Year, individual, etc.

– Often used to account for a lack of independence

● Treatments and covariates of interest are
usually treated as fixed effects

● Typically there is some degree of replication
otherwise the random effect is not identifiably
different from the residual “noise” term
e ~ N(0,s2)



  

Why bother?
Impacts on inference...



  



  

Start Simple

Progressively 
Add Complexity



  

Example: Biomass by Block and Time



  

Model 1: Global Mean

model{
  mu ~ dnorm(0,0.001) ## priors
  sigma ~ dgamma(0.001,0.001)
  
  for(t in 1:nt){ ## time
    for(b in 1:nb){ ## block
      for(i in 1:nrep){ ## individual
        x[t,b,i] ~ dnorm(mu,sigma)
      }
    }
   }  
}



  



  

Model 2: Random Temporal Effect
model{ 
  mu ~ dnorm(0,0.001) ## priors
  sigma ~ dgamma(0.001,0.001)
  for(t in 1:nt){alpha.t[t] ~ dnorm(0,tau.t)}
  tau.t ~ dgamma(0.001,0.001) ## hyperprior

  for(t in 1:nt){
    Ex[t] <- mu + alpha.t[t] ## process model
    for(b in 1:nb){
      for(i in 1:nrep){
        x[t,b,i] ~ dnorm(Ex[t],sigma)   ## data model
      }
    }  
  }  
}



  



  

Model 3: Random Block Effect
model{
  mu ~ dnorm(0,0.001)  ## priors
  sigma ~ dgamma(0.001,0.001)
  tau.b ~ dgamma(0.001,0.001)
  for(b in 1:nb){ alpha.b[b] ~ dnorm(0,tau.b)}
 
  for(b in 1:nb){
    Ex[b] <- mu + alpha.b[b]
    for(t in 1:nt){
      for(i in 1:nrep){
        x[t,b,i] ~ dnorm(Ex[b],sigma)
      }
    }
  }  
}



  



  

Model 4: Random Block & Time
model{

  mu ~ dnorm(0,0.001)   ## priors
  sigma ~ dgamma(0.001,0.001)
  tau.b ~ dgamma(0.001,0.001)
  tau.t ~ dgamma(0.001,0.001)
  for(t in 1:nt){alpha.t[t] ~ dnorm(0,tau.t) }
  for(b in 1:nb){alpha.b[b] ~ dnorm(0,tau.b) }

  for(t in 1:nt){
    for(b in 1:nb){
      Ex[t,b] <- mu + alpha.b[b] + alpha.t[t]
      for(i in 1:nrep){
        x[t,b,i] ~ dnorm(Ex[t,b],sigma)
      }
    }
  }  
}



  

Summary Table

Model mu sigma DIC

Global Mean 4.78 (0.11) 2.92 (0.27) 977.9

Random Time 4.75 (0.33) 2.23 (0.21) 0.97 (0.64) 919.8

Random Block 4.82 (0.69) 1.92 (0.18) 2.36 (3.62) 878.0

Random B x T 4.85 (0.75) 0.84 (0.08) 1.31 (0.67) 0.80 (0.60) 766.8

tau.t tau.b



  

Mixed Model

 i , k=X iki , k Process model

i , k~N 0, 2 Data model

k~N 0,2 Random effect

2~IG s1 , s2 Error variance prior

~N B0,V  Fixed effects prior

2~IG t1, t2 Random effects
variance prior

Fixed
Effects

Random
Effect

Residual
Error
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Why bother?
Impacts on inference...



  

Explaining unexplained variance
● Random effects attempt to account for the

unexplained variance associated with some
group (plot, year, etc.) due to all the things that
were not measured

● May point to scales that need additional
explanation

● Adding covariates may explain some portion of
this variance, but there's always something you
didn't measure

● Sometimes additional fixed effects not justified
(model selection)



  

Example: Year effects

● Consider the number of new young produced
per adult female from population of birds

● Suppose adding a year effect shows significant
year-to-year variability that is coherent through
the whole population

● Based on the estimates of the year effects,
could look for additional covariates that
correlate with these values (e.g. different
climate variables) without having to rerun the
whole model

● Could refine the model to add additional drivers



  

Modeling Uncertainty

● Overall take home message:

The proper accounting of uncertainty can
be JUST AS IMPORTANT to making valid
inference from your model as the process
model and covariates

● Random effects are used to account for
the impacts of unmeasured/unmeasurable
 covariates



  

Assumptions of Linear Model

● Homoskedasticity Model variance
● No error in X variables Errors in variables
● No missing data Missing data model
● Normally distributed error    GLM
● Residual error in Y variables is 

measurement error
● Observations are independent

Hierarchical
Models
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